A Random Walk through CVD States
This page is not normative
This page is not considered a core part of the Vultron Protocol as proposed in the main documentation. Although within the page we might provide guidance in terms of SHOULD, MUST, etc., the content here is not normative.
To begin to differentiate skill from chance in the next few sections, we need a model of what the CVD world would look like without any skill. We cannot derive this model by observation. Even when CVD was first practiced in the 1980s, some people may have had social, technical, or organizational skills that transferred to better CVD. We follow the principle of indifference as stated below.
Benjamin Eva in Principles of Indifference
Let \(X = \{x_1,x_2,...,x_n\}\) be a partition of the set \(W\) of possible worlds into \(n\) mutually exclusive and jointly exhaustive possibilities. In the absence of any relevant evidence pertaining to which cell of the partition is the true one, a rational agent should assign an equal initial credence of \(n\) to each cell.
While the principle of indifference is rather strong, it is inherently difficult to reason about absolutely skill-less CVD when the work of CVD is, by its nature, a skilled job. Given the set of states and allowable transitions between them, we can apply the principle of indifference to define a baseline against which measurement can be meaningful.
Estimating State Transition Probabilities
Our assumption is that transitions are equally probable, not that states or histories are. The events \(\sigma \in \Sigma\) trigger state transitions according to \(\delta\) and the histories \(h \in \mathcal{H}\) are paths (traces) through the states. This meets the definition above because each \(\sigma \in \Sigma\) is unique (mutually exclusive) and \(\delta\) defines an exhaustive set of valid \(\sigma\) at each state \(q \in \mathcal{Q}\).
Initial State Probabilities
For example, because causality requires \(\mathbf{V} \prec \mathbf{F}\) and \(\mathbf{F} \prec \mathbf{D}\), only four of the six events in \(\Sigma\) are possible at the beginning of each history at \(q_0=vfdpxa\): \(\{\mathbf{V},\mathbf{P},\mathbf{X},\mathbf{A}\}\). Since the principle of indifference assigns each possible transition event as equally probable in this model of unskilled CVD, we assign an initial probability of 0.25 to each possible event.
From there, we see that the other rules dictate possible transitions from each subsequent state.
More implications for initial state probabilities
For example, in the CS Model Transitions, we established that
- any \(h\) starting with \((\mathbf{P})\) must start with \((\mathbf{P},\mathbf{V})\)
- any \(h\) starting with \((\mathbf{X})\) must proceed through \((\mathbf{X},\mathbf{P})\) which coupled with the previous rule yields \((\mathbf{X},\mathbf{P},\mathbf{V})\).
Therefore, we expect histories starting with \((\mathbf{P},\mathbf{V})\) or \((\mathbf{X},\mathbf{P},\mathbf{V})\) to occur with frequency 0.25 as well.
We can use these transition probabilities to estimate a neutral baseline expectation of which states would be common if we weren't doing anything special to coordinate vulnerability disclosures. Specifically, for each state we set the transition probability to any other state proportional to the inverse of the outdegree of the state, as shown in the \(p(transition)\) column of the table below. Real world data is unlikely to ever reflect such a sad state of affairs (because CVD is happening after all).
State Transition Diagram
For convenience, we've reproduced the CS model state transition diagram here. The diagram below shows the allowed transitions between states in the CS model. The diagram is a directed graph with states as nodes and transitions as edges. The diagram is acyclic and begins at the vfdpxa state and ends at the VFDPXA state.
---
title: Case State Diagram
---
stateDiagram-v2
direction LR
VendorUnaware: Vendor Unaware
VendorAware: Vendor Aware
FixReady: Fix Ready
FixDeployed: Fix Deployed
state VendorUnaware {
vfdpxa
vfdPxa
vfdpXa
vfdPXa
vfdpxA
vfdPxA
vfdpXA
vfdPXA
}
state VendorAware {
Vfdpxa
VfdPxa
VfdpXa
VfdPXa
VfdpxA
VfdPxA
VfdpXA
VfdPXA
}
state FixReady {
VFdpxa
VFdPxa
VFdpXa
VFdPXa
VFdpxA
VFdPxA
VFdpXA
VFdPXA
}
state FixDeployed {
VFDpxa
VFDPxa
VFDpXa
VFDPXa
VFDpxA
VFDPxA
VFDpXA
VFDPXA
}
[*] --> vfdpxa
vfdpxa --> vfdPxa : P
vfdpxa --> vfdpXa : X
vfdpXa --> vfdPXa : P
vfdpxa --> vfdpxA : A
vfdpxA --> vfdPxA : P
vfdpxA --> vfdpXA : X
vfdpXA --> vfdPXA : P
vfdpxa --> Vfdpxa : V
vfdpxA --> VfdpxA : V
vfdPxa --> VfdPxa : V
vfdPXa --> VfdPXa : V
vfdPxA --> VfdPxA : V
vfdPXA --> VfdPXA : V
Vfdpxa --> VfdPxa : P
Vfdpxa --> VfdpXa : X
VfdpXa --> VfdPXa : P
Vfdpxa --> VfdpxA : A
VfdpxA --> VfdPxA : P
VfdpxA --> VfdpXA : X
VfdpXA --> VfdPXA : P
VfdPxa --> VfdPxA : A
VfdPxa --> VfdPXa : X
VfdPXa --> VfdPXA : A
VfdPxA --> VfdPXA : X
Vfdpxa --> VFdpxa : F
VfdpxA --> VFdpxA : F
VfdPxa --> VFdPxa : F
VfdPXa --> VFdPXa : F
VfdPxA --> VFdPxA : F
VfdPXA --> VFdPXA : F
VFdpxa --> VFdPxa : P
VFdpxa --> VFdpXa : X
VFdpXa --> VFdPXa : P
VFdpxa --> VFdpxA : A
VFdpxA --> VFdPxA : P
VFdpxA --> VFdpXA : X
VFdpXA --> VFdPXA : P
VFdPxa --> VFdPxA : A
VFdPxa --> VFdPXa : X
VFdPXa --> VFdPXA : A
VFdPxA --> VFdPXA : X
VFdpxa --> VFDpxa : D
VFdpxA --> VFDpxA : D
VFdPxa --> VFDPxa : D
VFdPXa --> VFDPXa : D
VFdPxA --> VFDPxA : D
VFdPXA --> VFDPXA : D
VFDpxa --> VFDPxa : P
VFDpxa --> VFDpXa : X
VFDpXa --> VFDPXa : P
VFDpxa --> VFDpxA : A
VFDpxA --> VFDPxA : P
VFDpxA --> VFDpXA : X
VFDpXA --> VFDPXA : P
VFDPxa --> VFDPxA : A
VFDPxa --> VFDPXa : X
VFDPXa --> VFDPXA : A
VFDPxA --> VFDPXA : X
VFDPXA --> [*]
Allowed State Transitions, their Probabilities, and PageRank
The table below shows the allowed transitions between states in the CS model. The \(p(transition)\) column shows the probability of each transition under the assumption that all transitions are equally probable. The final column shows the PageRank of each state, which is a measure of the probability of being in that state after a random walk through the state graph.
Start State | Next State(s) | \(p({transition})\) | PageRank |
---|---|---|---|
vfdpxa | vfdpxA, vfdpXa, vfdPxa, Vfdpxa | 0.250 | 0.123 |
vfdpxA | vfdpXA, vfdPxA, VfdpxA | 0.333 | 0.031 |
vfdpXa | vfdPXa | 1.000 | 0.031 |
vfdpXA | vfdPXA | 1.000 | 0.013 |
vfdPxa | VfdPxa | 1.000 | 0.031 |
vfdPxA | VfdPxA | 1.000 | 0.013 |
vfdPXa | VfdPXa | 1.000 | 0.031 |
vfdPXA | VfdPXA | 1.000 | 0.016 |
Vfdpxa | VfdpxA, VfdpXa, VfdPxa, VFdpxa | 0.250 | 0.031 |
VfdpxA | VfdpXA, VfdPxA, VFdpxA | 0.333 | 0.020 |
VfdpXa | VfdPXa | 1.000 | 0.011 |
VfdpXA | VfdPXA | 1.000 | 0.010 |
VfdPxa | VfdPxA, VfdPXa, VFdPxa | 0.333 | 0.037 |
VfdPxA | VfdPXA, VFdPxA | 0.500 | 0.032 |
VfdPXa | VfdPXA, VFdPXa | 0.500 | 0.051 |
VfdPXA | VFdPXA | 1.000 | 0.063 |
VFdpxa | VFdpxA, VFdpXa, VFdPxa, VFDpxa | 0.250 | 0.011 |
VFdpxA | VFdpXA, VFdPxA, VFDpxA | 0.333 | 0.013 |
VFdpXa | VFdPXa | 1.000 | 0.007 |
VFdpXA | VFdPXA | 1.000 | 0.008 |
VFdPxa | VFdPxA, VFdPXa, VFDPxa | 0.333 | 0.018 |
VFdPxA | VFdPXA, VFDPxA | 0.500 | 0.027 |
VFdPXa | VFdPXA, VFDPXa | 0.500 | 0.037 |
VFdPXA | VFDPXA | 1.000 | 0.092 |
VFDpxa | VFDpxA, VFDpXa, VFDPxa | 0.333 | 0.007 |
VFDpxA | VFDpXA, VFDPxA | 0.500 | 0.010 |
VFDpXa | VFDPXa | 1.000 | 0.007 |
VFDpXA | VFDPXA | 1.000 | 0.009 |
VFDPxa | VFDPxA, VFDPXa | 0.500 | 0.012 |
VFDPxA | VFDPXA | 1.000 | 0.026 |
VFDPXa | VFDPXA | 1.000 | 0.031 |
VFDPXA | \(\emptyset\) | 0.000 | 0.139 |
Using PageRank to Estimate Baseline State Probabilities
We use the PageRank algorithm to provide state probability estimates. The PageRank algorithm provides a probability estimate for each state based on a Markov random walk of the directed graph of states. PageRank assumes each available transition is equally probable, consistent with our model. To avoid becoming stuck in dead ends, PageRank adds a teleport feature by which walks can, with a small probability, randomly jump to another node in the graph.
Before proceeding, we need to make a small modification of our state digraph. Without modification, the PageRank algorithm will tend to be biased toward later states because the only way to reach the earlier states is for the algorithm to teleport there. Teleportation chooses states uniformly, so for example there is only a \(1/32\) chance of our actual start state (\(q_0={vfdpxa}\)) ever being chosen. Therefore, to ensure that the early states in our process are fairly represented we add a single link from VFDPXA to vfdpxa, representing a model reset whenever the end state is reached. This modification allows PageRank traversals to wrap around naturally and reach the early states in the random walk process without needing to rely on teleportation. With our modification in place, we are ready to compute the PageRank of each node in the graph. Results are shown in the preceding table.